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Abstract
We present an exhaustive study on tunneling and electrical conduction in an electrically biased
GaAs–AlyGa1−yAs generalized Fibonacci superlattice. The study is based on transfer matrix
formalism using an Airy function approach and provides an exact calculation of the current
density in the case of quasi-periodic multibarrier systems. The results suggest the use of such
quasi-periodic systems in perfect band-pass or band-eliminator (of extremely low width)
circuitry. We have clearly demonstrated the resonance-type peaks and negative differential
conductivity regimes in such systems. It has also been found that quasi-periodicity favors sharp
negative differential conductivity peaks compared to those in periodic superlattices and thus
have profound importance in device applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semiconductor superlattices (SLs) have been a subject of
great interest during the last two decades both from the
fundamental point of view as well as for their potential
device applications [1]. In particular, since the experimental
realization of quasi-periodic SLs, such as Fibonacci [2] and
Thue-Morse [3] SLs, the topic has gained momentum from
experimental [4–6] and theoretical [7–15] viewpoints in the
understanding of their unique physical properties, such as their
electronic and transport properties. One of the most appealing
motivations for these studies is the theoretical prediction that
ideal quasi-periodic SLs should exhibit a highly fragmented
electronic spectrum displaying self-similar patterns [16, 17].

To bring forth the motivation behind our proposed study
adequately, it is worthwhile reviewing the salient features
of electrical conduction in periodic SLs (PSLs) and the
tunneling in semiconductor multibarrier systems (MBS). In
an unbiased MBS the transmission coefficient shows resonant
tunneling peaks at certain incident electron energies. These
quasi-resonant tunneling energy states correspond to unit

4 Address for correspondence: Department of Physics, Prabhat Kumar
College, Contai, PO Contai, District Purba Medinipur, West Bengal, Pin-
721401, India.

transmission coefficient and group themselves to band like
clusters akin to mini energy bands in the PSLs [18]. In
the PSLs the wavefunctions in the absence of electric field
are extended in nature. When a uniform electric field
is applied perpendicular to the growth axis, the electronic
wavefunctions become localized (Wannier–Stark states) and
the mini energy band passes into an equally spaced,
discrete ladder-like spectrum (Wannier–Stark ladder). As a
consequence of such localization the tunneling probability
across the MBS decreases abruptly resulting in negative
differential conductivity (NDC) regimes in the current–voltage
characteristics. The NDC in dc-biased SL results in traveling
electrical domain formation that may be used in a microwave
source [19]. The NDC regions appear to be important for the
quasi-periodic systems as these systems represent intermediate
cases between periodic and disordered systems. Hence it is
plausible to study the tunneling of electrons in electrically
MBS and the electrical conduction in these quasi-periodic
systems. The present study might help the experimentalists to
fabricate the electronic devices by finding the NDC regimes in
the current–voltage characteristics.

In some previously reported theoretical studies [13–15]
on electrically biased Fibonacci superlattices (FSLs), the
electrical conduction was studied by calculating Landauer
resistance [15]. Here Landauer resistance was calculated by
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the transmission and reflection probabilities and is valid at
zero temperature. But prior to device applications at room
temperature, the knowledge of net tunneling current is very
important as electrons with all possible energies contribute in
the electrical conduction. Most of these works on Landauer
resistance were based on an envelope function approach. No
work has so far been reported on electrical conduction in the
biased FSLs through the exact studies of current density and
tunneling using Airy functions. For the case of electrically
biased MBS, the transfer matrix method using the solution of
Schrödinger’s equation via Airy functions is treated as the most
accurate method [20] of computing the transmission coefficient
and then the current density. The current density calculated in
the present approach [21] seems to be more realistic for device
applications. The major problem dealing with Airy functions
pertains to the numerical overflow of the Airy functions at
low bias condition [22]. To overcome this problem, previous
workers [13–15] have resorted to the asymptotic forms of
the Airy functions, which compromises the accuracy of the
result. But we have recently presented exact studies [23] on
electrical conduction and tunneling in case of PSL under a
uniform electric field using Airy functions, which take care of
the problem of numerical overflow at low bias.

In view of the above discussion, we have presented
the study on resonant tunneling in electrically biased
GaAs–AlyGa1−yAs generalized Fibonacci-type superlattices
(GFSL) [24] generated using a generalized Fibonacci sequence
(GFS). In the first approximation, the SLs constructed by
growing alternate layers of two semiconducting materials
having similar band structures but with different energy
gaps can be considered as quasi-1D systems of rectangular
potential wells separated by barriers in the conduction band
profile. Although this restriction may, at first sight, appear
as a restrictive one, it turns out that many interesting
properties of the SLs and polymer systems [25–27] can be
properly described in terms of effective 1D Hamiltonians
under reasonable conditions. The theoretical development
is based on the transfer matrix approach using exact Airy
function formalism and effective mass dependent boundary
conditions [28]. Within this scheme, the main focus of our
work is to calculate the exact current density directly from the
transmission coefficient for these quasi-periodic systems.

The work is organized as follows. In section 2, we
have detailed the theoretical scheme used for the transmission
coefficient and the current density. Section 3 deals with the
numerical analysis. Our multifarious results are discussed in
section 4. Finally, our conclusions are presented in section 5.

2. Theoretical framework

The GFSLs can be generated by an iterative process according
to the following rule: St+1 = [n[St ]] · [m[St−1]] where n
and m are natural numbers; the index t defines the so-called
generation number of GFS, [n[St ]] and [m[St−1]] are meant
for n and m repetitions of [St ] and [St−1] respectively and
‘·’ denotes concatenation of strings. Table 1 presents a few
initial generations of GFSs of two different kinds i.e., for the
first case: n = 1, m = 1(St+1) and another case: n = 2,

Table 1. A few initial GFSs for different values of n and m.

t St+1 St+1 = (St)
1 · (St−1)

1 S′
t+1 S′

t+1 = (St)
2 · (St−1)

1

1 S1 A S′
1 A

2 S2 B S′
2 B

3 S3 BA S′
3 BBA

4 S4 BAB S′
4 BBABBAB

5 S5 BABBA S′
5 BBABBABBBABBABBBA

6 S6 BABBABAB
7 S7 BABBABABBABBA

m = 1 (S′
t+1). Here we have started the construction of GFS

with S1 = S′
1 = A, S2 = S′

2 = B , where A and B are the
elementary blocks made of a small gap material GaAs quantum
well of width ‘a’ and of a large gap material AlyGa1−yAs
barrier of thickness ‘b’ respectively. These two materials
like GaAs and AlyGa1−yAs have similar band structures but
different energy gaps. From the above table it is understood
that quasi-periodicity increases more for S′

t+1 than St+1 [15].
Our model consists of total N barriers where barrier width is
varied for different GFSs according to table 1.

2.1. Transmission coefficient

In the SL, as the semiconductor layers come into contact,
a discontinuity in the conduction band edge appears, which
is equal to the difference in the chemical affinities of the
materials. Further, the electrons have a tendency to spill over
from the barrier layer to the wells on either side until the Fermi
levels line up. Thus the charge transfer is expected to produce
a symmetrical sagging on the roof of the rectangular barriers.
For these semiconducting materials, the carrier concentration
is of the order of 1016 cm−3. In case of the SLs considered
here, the barrier width is much less than 100 Å and the
sagging produced in the rectangular shape of the barrier can
be shown to be negligibly small in comparison to the barrier
height [29]. Moreover, in such systems, as the screening length
(ξ) is sufficiently large, the screening effect on the potential
appearing through a multiplying factor (e−x/ξ ) is minimal.
Hence for the calculation of the transmission coefficient we
assume that the interfaces between the layers are sharply
defined and devoid of any surface effects, so that the potential
distribution may be considered to be an array of rectangular
wells and barriers with the barrier height V0.

The additional term in the Hamiltonian for a dc-biased
SL can be obtained by solving the characteristic Poisson’s
equation which involves the dielectric constants of the
materials. However, as the free carrier density is sufficiently
small for the semiconductor SLs the external electric potential
does not change significantly [15] in the well and barrier layers.
Hence the potential representing the electrical bias is assumed
to take the linear form (−eEx) in both the barrier and the well
regions. The schematic model of the conduction band of a one-
dimensional GFSL in the presence of a uniform electric field
E as shown in figure 1, is given as:

V (x) =
{
(V0 − eEx) for xnL � x � xnR

−eEx, otherwise,
(2.1.1)
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Figure 1. Potential energy profile for an electrically biased Fibonacci
superlattice.

where xnL and xnR are the positions of the left and the right
walls of the nth barrier respectively.

Under the influence of the field applied across the GFSL,
the one-dimensional Schrödinger’s equation in the well and the
barrier regions respectively appears as

− h̄2

2m∗
1

d2ψ(1)

dx2
− eExψ(1) = εψ(1), (2.1.2)

− h̄2

2m∗
2

d2ψ(2)

dx2
+ (V0 − eEx) ψ(2) = εψ(2), (2.1.3)

where m∗
1 and m∗

2 are the respective position dependent
effective masses in the well and barrier regions and ε is the
incident electron energy.

Using Airy functions the solutions of (2.1.2) and (2.1.3)
in the nth well and the nth barrier regions are obtained
respectively as:

ψ(1)n (x) = A2n−1 Ai (χ)+ B2n−1 Bi (χ) , (2.1.4)

where n = 1, . . . , (N + 1); χ = −α1x − λ1, α2
1 = 2m∗

1eE

h̄2 and

λ1 = 2m∗
1ε

h̄2α2
1

,

ψ(2)n (x) = A2n Ai (ϕ)+ B2n Bi (ϕ) , (2.1.5)

where n = 1, 2, . . . , N ; φ = −α2x + λ2, α2
2 = 2m∗

2eE

h̄2 and

λ2 = 2m∗
2(V0−ε)
h̄2α2

1
.

With the use of effective mass dependent boundary
conditions [28] which conserve both the probability density
and the current density associated with the wavefunctions at
the boundary of the heterojunction, the transfer matrix that
correlates the amplitudes of the wavefunction on the right of
the nth barrier with that on the left of the nth barrier is given
by [

A2n+1

B2n+1

]
= [Mn]

[
A2n−1

B2n−1

]
. (2.1.6)

Here [Mn] being the transfer matrix whose elements have the
following forms:

(Mn)11 = 1

w2

∣∣∣∣ Ai(φ2n) Bi(χ2n)

c−1 Ai ′(φ2n) Bi ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Ai(χ2n−1) Bi(φ2n−1)

cAi ′(χ2n−1) Bi ′(φ2n−1)

∣∣∣∣

− 1

w2

∣∣∣∣ Bi(φ2n) Bi(χ2n)

c−1 Bi ′(φ2n) Bi ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Ai(χ2n−1) Ai(φ2n−1)

cAi ′(χ2n−1) Ai ′(φ2n−1)

∣∣∣∣
(Mn)12 = 1

w2

∣∣∣∣ Ai(φ2n) Bi(χ2n)

c−1 Ai ′(φ2n) Bi ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Bi(χ2n−1) Bi(φ2n−1)

cBi ′(χ2n−1) Bi ′(φ2n−1)

∣∣∣∣
− 1

w2

∣∣∣∣ Bi(φ2n) Bi(χ2n)

c−1 Bi ′(φ2n) Bi ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Bi(χ2n−1) Ai(φ2n−1)

cBi ′(χ2n−1) Ai ′(φ2n−1)

∣∣∣∣
(Mn)21 = − 1

w2

∣∣∣∣ Ai(φ2n) Ai(χ2n)

c−1 Ai ′(φ2n) Ai ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Ai(χ2n−1) Bi(φ2n−1)

cAi ′(χ2n−1) Bi ′(φ2n−1)

∣∣∣∣
+ 1

w2

∣∣∣∣ Bi(φ2n) Ai(χ2n)

c−1 Bi ′(φ2n) Ai ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Ai(χ2n−1) Ai(φ2n−1)

cAi ′(χ2n−1) Ai ′(φ2n−1)

∣∣∣∣
(Mn)22 = − 1

w2

∣∣∣∣ Ai(φ2n) Ai(χ2n)

c−1 Ai ′(φ2n) Ai ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Bi(χ2n−1) Bi(φ2n−1)

cBi ′(χ2n−1) Bi ′(φ2n−1)

∣∣∣∣
+ 1

w2

∣∣∣∣ Bi(φ2n) Ai(χ2n)

c−1 Bi ′(φ2n) Ai ′(χ2n)

∣∣∣∣
×

∣∣∣∣ Bi(χ2n−1) Ai(φ2n−1)

cBi ′(χ2n−1) Ai ′(φ2n−1)

∣∣∣∣ ,
where χ2n−1 = −α1xnL − λ1, ϕ2n−1 = −α2xnL + λ2, χ2n =
−α1 xnR − λ1, ϕ2n = −α2xnR + λ2, 1

c = m∗
1α2

m∗
2α1

and the

Wronskian, w = Ai(χi)Bi ′(χi )− Bi(χi)Ai ′(χi ); i being any
integer.

Let the field be applied between x = 0 and l; l being
the total length of GFSL. The transfer matrices, designated by
[I ] and [O] correlate the amplitudes of the wave functions in
the left and right sides of x = 0 and x = l, respectively.
Finally the transfer matrix that correlates the amplitudes of the
wavefunctions for x < 0 and x > l takes the shape:

[
AF

BF

]
= [O]

N∏
n=1

[Mn] [I ]

[
A0

B0

]
= [WN ]

[
A0

B0

]
, (2.1.7)

where

[O] = 1

2

[
(Ai(χF)− α1

ik′ Ai ′(χF )) exp(−ik ′ nd)
(Ai(χF)+ α1

ik′ Ai ′(χF)) exp(ik ′ nd)

(Bi(χF)− α1
ik′ Bi ′(χF )) exp(−ik ′ nd)

(Bi(χF)+ α1
ik′ Bi ′(χF )) exp(ik ′ nd)

]
,

[I ] = 1

w

[
Bi ′(χ0)+ ik

α1
Bi(χ0)

−
(

Ai ′(χ0)+ ik
α1

Ai(χ0)
)

Bi ′(χ0)− ik
α1

Bi(χ0)

−
(

Ai ′(χ0)− ik
α1

Ai(χ0)
)]

,

3
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k2 = 2m∗
1ε

h̄2
and k ′2 = 2m∗

1

h̄2
(ε + eEl).

Here [WN ] refers to the transfer matrix that relates the
coefficient matrix of the incoming and outgoing wave in the
N barrier system. It has been found that the determinant of the
transfer matrix [WN ] is equal to unity.

As the outgoing wave has no reflection component, we can
take BF = 0. Using this fact, the transmission coefficient (τc)
across N barriers can be given as [10, 13, 14, 23]

τc = |AF |2
|A0|2 =

∣∣∣∣det[WN ]
(WN )22

∣∣∣∣
2

. (2.1.8)

2.2. Current density

The current density (J ), calculated using τc from (2.1.8) for a
one-dimensional system, is expressed as [21]

J = em∗kBT

2π2h̄3

∞∫
0

(
k ′

k

)
τc

× ln

[
1 + exp{(EF − ε)/kBT }

1 + exp{(EF − ε − eVa)/kBT }
]

dε, (2.2.1)

where EF is the Fermi energy, ε the incident energy, Va the
overall applied bias, T the absolute temperature.

3. Numerical analysis

We have calculated the transmission coefficient of the chosen
GFSL in the below-barrier condition (ε < V0) and also the
current density for the applied uniform electric field in a wide
range of model parameters. Since most of the practical devices
are mainly concerned with applications at room temperature
we have selected T = 300 K for most of our calculations.
We have performed our calculations for a GaAs–Al0.3Ga0.7As
GFSL, assuming the conduction band discontinuity (V0) =
370.1 meV [30] and electron effective masses, m∗

1 = 0.065 m0,
m∗

2 = 0.0919 m0, where m0 is the free electron mass. For
a GaAs–Al0.3Ga0.7As GFSL, we have taken n = 1, m = 1
(St+1) and n = 2, m = 1 (S′

t+1) for two initial types of GFS as
in table 1. For convenience, we will simply refer to St+1 as the
first type GFSL and S′

t+1 as the second type GFSL. The lattice
constants for the well and barrier materials are considered as
5.6533 Å and 5.65564 Å respectively. The width ‘a’ of the well
block of the low gap material is kept fixed by taking the number
of unit cells (nwc) equals to 5. But the width ‘b’ of the barrier
block of the high gap material consists of a variable number
of unit cells (nbc = 1–5). For the study of tunneling in the
presence of a uniform electric field, the values of applied field
are chosen as 1, 105, 106 and 107 V m−1. For an exactly zero
field, the calculation based on the Airy function is not possible
as the argument of the function contains the field parameter
in the denominator. So for all practical purposes, the electric
field of 1 V m−1 can be treated as the unbiased condition
(field-free case). For the computational of J by (2.2.1), we
select the value of Fermi energy as 0.069 eV at T = 300 K.
Here the Fermi energy is taken as half the energy difference

Figure 2. Variation of transmission coefficient (τc) versus incident
electron energy (ε) (0–0.4 eV) for number of barrier cells, nbc = 1
(black online, (i) in the printed edition), 2 (red online, (ii) in the
printed edition) 3 (green online, (iii) in the printed edition) 4 (blue
online, (iv) in the printed edition) and 5 (magenta online, (v) in the
printed edition) in the case of a total number of barriers, N = 5 for
the unbiased (a) first type (S7) GFSL (b) second type (S′

5) GFSL
using the GaAs–Al0.3Ga0.7As system.

between the conduction band edge of the well material and the
edge of the lowest miniband in the conduction band of the SL
calculated on the basis of a model proposed earlier [31]. To
show the temperature variation of current density the model
parameters are also calculated accordingly for these systems at
T = 200 K.

4. Results and discussion

The transmission coefficient is numerically evaluated on the
basis of (2.1.8) for five barriers in the first (S7 generation)
and second (S′

5 generation) types of GaAs–Al0.3Ga0.7As GFSL.
At first we have focused our attention on the resonance-type
tunneling with the variation of barrier width for both the
cases (figures 2(a) and (b)) to choose the appropriate nbc for
which optimal resonant tunneling can occur. The transmission

4
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coefficients for both the types in unbiased condition are plotted
against incident energy (0–0.4 V) and shown in figures 2(a)
and (b) respectively. From the tunneling point of view, it
is important to study the transmittance in the below-barrier
region. In the unbiased PSL the resonant tunneling corresponds
to τc equal to unity across the structure and the incident
energies at which the resonant tunneling occurs are termed as
resonant tunneling energies. Any electron having energy equal
to any one of these quasi-level resonant energies tunnels out
across a SL without any significant attenuation in its intensity.
Resonant tunneling is a consequence of the phase coherence
of electron waves in the quantum wells of SL. The quasi-
level resonant energies forming a band like cluster correspond
to a miniband in the SL. The number of such states in each
cluster for an N-barrier periodic MBS is found to be (N − 1)
which is equal to the number of wells in the MBS. It is
worth pointing out that a miniband in a PSL with N barriers
contains (N − 1) energy levels. In the forbidden region τc

remains almost zero. But we find some remarkable changes
in the case of FSLs. In the below-barrier region for the first
type GFSL (figure 2(a)), although there are four wells, we
obtain almost three resonance-type tunneling peaks for all the
different values of barrier width. In all these cases the central
peak having the maximum τc occurs at a particular energy,
εc = 0.168 eV which corresponds to the only resonant energy
state of a periodic double barrier system [23]. The cluster of
resonance-type energy states has been found to be symmetric
around εc due to coupling of the wells. With an increase in
the nbc value i.e., the barrier width, it is also observed that the
other peaks decrease systematically and seem to move towards
εc. This can be easily understood by the fact that the coupling
among the wells decreases with an increase in barrier width and
the transmittance spectrum finally tends to that of an isolated
finite single well. To study the case of the second type GFSL
also having four wells, we have obtained 4 tunneling peaks
(figure 2(b)) for all nbc values in the region, ε < V0. It is
interesting to note that the 4 peaks for all values of nbc are
evenly distributed around the same energy, εc = 0.168 eV.
The height of all tunneling peaks diminishes systematically
with increasing nbc like that of the first type GFSL. But the
only exception is that the energy εc corresponds to a resonant
tunneling level for the first type GFSL and a forbidden level
for the second type. Figure 2(a) suggests that the first type
GFSL for nbc = 5 can act as extremely low width (around
εc) band-pass filter whereas the second type GFSL as a band-
eliminator for the same nbc values (figure 2(b)) [12]. It is worth
of mentioning that the distribution of 3 peaks (first type) and
4 peaks (second type) seems to be akin to the distribution of
an odd and even number of energy states respectively around
the central energy in a parabolic ε − k diagram. As the main
objective of figures 2(a) and (b) is concerned with finding
the optimal resonant tunneling with respect to the heights of
resonance-type peaks associated with small resonance widths,
nbc = 2 is found to be suitable for further calculations of
GFSL.

Next for the sake of understanding the field-effect on
τc, we have presented our results on τc in the below-barrier
region against incident electron energy (0–0.4 eV) in GaAs–
Al0.3Ga0.7As GFSL for N = 5 barriers (figure 3(a) for PSL,

figure 3(b) for the first type GFSL and figure 3(c) for the second
type GFSL) under the dc electric fields, E = 1, 105, 106 and
107 V m−1 respectively. It has been found that the effect of
electric field on the transmission property becomes remarkable
beyond the field ∼105 V m−1. With the application of fields,
E = 105 and 106 V m−1, the important feature is that the quasi-
resonant tunneling energy levels are found to get Stark shifted
towards the lower energies as in PSL [23]. From these figures,
it is prominent that the electric field has a greater influence
on the transmission spectrum for the GFSLs in comparison
with PSL. In case of the GFSLs, for E = 106 V m−1, τc

increases abruptly at some resonant energies and also suffers
a decrease at some other resonant energies. But, at such a
field, the transmission probability decreases for all resonant
energies in case of PSL [23]. For E = 107 V m−1, we observe
a strong reduction of transmission properties resulting in the
disappearance of several transmission peaks in all cases, which
can be explained on the basis of the occurrence of localized
Wannier–Stark states. To explain the change of peak heights
or the absence of resonance-type peaks it will be relevant to
discuss the energy levels and the wavefunctions in an PSL in
the presence of a field. In a field-free PSL the wavefunctions
are extended in nature due to overlapping of the wavefunctions
of the individual wells. This makes the resonant tunneling
in the MBS a distinct possibility. For low applied fields, the
energy spectrum of an PSL is expected to retain all its features
except being Stark shifted. This phenomenon is also clearly
observed in the quasi-tunneling energy bands of GFSL for
fields up to 106 V m−1. With an increase in field, owing to the
tilting of the bands, the wavefunctions become more and more
localized resulting in a decrease in the tunneling probability.
As a result, the number of resonance-type peaks gradually
decreases. But the increase in τc at such field is due to the
coincidence of the energy states of two consecutive wells. For
larger fields at which the existence condition (eEd � εbw, εbw

being the width of the miniband and d , the SL periodicity) [31]
for the occurrence of discrete WSL is fulfilled, the localization
of the wavefunctions corresponding to WSL states appears.
Hence there is no overlap of the wavefunctions of individual
wells and the tunneling probability reduces drastically.

Finally the current densities for the first and second
types of GFSL are calculated directly from the transmission
coefficient using (2.1.8). The current densities (J ) computed
at two different temperatures (T = 200 and 300 K) for
N = 5 barriers in case of aforesaid GFSLs’ and PSL on
the basis of (2.2.1) are plotted against the applied bias (V )
(0–1.5 V) in figure 4. It is worthwhile considering the case
of PSL for the effective comparison with quasi-periodic case.
In all these systems the J–V characteristics show resonance-
type curves with NDC regimes in between resonance-type
J peaks. These J peaks for PSL corresponding to higher
bias have higher values of J . But for the GFSLs there are
no such regular variation. Further, the first resonance-type
peak and the first NDC regime in the conductivity curves
appears for fields which satisfy the existence condition [31]
for the WSL states in a PSL having similar dimensions. In
the presence of WSL states the electrical conduction is guided
by the hopping processes between the WSL states via optical
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Figure 3. Variation of transmission coefficient (τc) versus incident electron energy (ε) (0–0.4 eV) for the (a) PSL, (b) first type (S7) GFSL, (c)
second type (S′

5) GFSL using GaAs–Al0.3Ga0.7As system in the case of total number of barriers, N = 5 with the electric field, E = 1 V m−1

(black online, (i) in the printed edition), 105 V m−1 (red online, (ii) in the printed edition), 106 V m−1 (green online, (iii) in the printed edition)
and 107 V m−1 (blue online, (iv) in the printed edition).

phonon scattering. In the presence of WSL, the current–
field relation exhibits resonant-type peaks in current for fields,
Eq = h̄ω/qed, q = 1, 2, . . ., etc, h̄ω being the optical phonon
energy. This feature corresponds to resonance-type transitions
such that the phonon energy h̄ω is an integral multiple of
the spacing (eEd) of the WSL. Further, the increase in field
increases the level spacing between WSL states causing a
decrease in the hopping probability. The decrease of hopping
probability with an increase in field brings a corresponding
decrease in the current with an increase in the field and
thereby establishes NDC. The phenomena also explain the
appearance of resonance-type peaks and NDC regions in the
current density curves for the quasi-periodic systems. It is
further observed in figure 4 that the current density decreases
with the increase in quasi-periodicity. This feature is more
prominent in the low applied bias. Although the general
nature of current density remains same, the sharpness of NDC
regions increases and the corresponding peaks shift towards the
low applied bias with the enhancement in quasi-periodicity,
as seen for the cases of the first and second types of GFSL.
Widths of NDC regions are also observed to be narrower as the
degree of quasi-periodicity increases. This is due to the fractal
character of electronic states of GFSL. Such a decrement in the
width of the NDC regimes can be suitably exploited for device
applications.

As far as the variation of temperature is concerned it is
seen from figure 4 that there is an overall decrease in the

Figure 4. Current density (J )–voltage (V ) characteristics for number
of barriers, N = 5 in case of the PSL (black online, (a) in the printed
edition), the first type (S7) GFSL (red online, (b) in the printed
edition) and the second type (S′

5) GFSL (green online, (c) in the
printed edition) using GaAs–Al0.3Ga0.7As system at T = 300 K
(solid line) and T = 200 K (broken line). Current density is given in
A m−2.

current density with a lowering in temperature for all types
of SL. This is due to the decrease in the number of thermally
generated carriers in the system. The peaks of the current
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density curves show a tiny shift towards higher applied bias
as the temperature is decreased. Although a little change
is seen near the peaks, the temperature variation effect is
significant near the troughs and thereby the NDC regions.
From figure 4 it is well understood that the sharpness of the
NDC regions increase with a decrease in temperature and the
effect gets more pronounced with an increase in aperiodicity of
the systems. A detailed study on the variation of J with T is
under our active consideration.

5. Conclusion

In this paper we have presented the exact result on transmission
coefficient and current density in case of two types of quasi-
periodic GFSL under different electric fields. Like PSL, the
transmittance spectrum for GFSL also exhibits resonance-type
peaks and the corresponding resonant energy states group
into bands separated by forbidden gaps. In the first type
(S7) GFSL, three resonance-type peaks are observed and they
are distributed around the center of the band similar to the
distribution of the odd number of states in an energy band.
The central peak is found to be higher than the others. In
the second type (S′

5) GFSL, four resonance-type peaks are
observed. The distribution of these transmission peaks in the
band is similar to that of an even number of states in an energy
band. Here the height of the peaks increases as we go from
the center to the periphery of the tunneling band. Further,
it is interesting to note that the electron with energy εc has
the maximum tunneling probability for the first type GFSL
but null tunneling probability for the second type GFSL. This
phenomenon gives a clear indication for the use of GFSL as
an effective electronic filter. The resonance-type peaks in both
types of GFSL suffer Stark shift like PSL with the application
of electric field. As expected for high fields in the case of PSL,
the coupling between the quasi-resonant conduction energy
levels becomes reduced and the incident electron waves get
localized. Consequently, transmittance reduces significantly
and the resonance-type peaks almost disappear. Though the
same features are present in the case of both types of GFSL, the
transmittance at some quasi-resonant energies, on the contrary,
increases due to the coincidence of energy states in the two
consecutive wells. Our results show that quasi-periodicity
affects the current density significantly when compared with
the situation in a periodic SL. The magnitude of current
density decreases not only with an increase in aperiodicity
but also with a decrease in temperature. Both aperiodicity
and a lowering in temperature favor the comparatively sharp
NDC characteristics which have a profound importance in the
output power generation of the SL source, which depends on
the current and voltage swing in the NDC region. Although
the GaAs–AlyGa1−yAs GFSL has been used to test the
applicability of the model, the features highlighted in this paper
will be applicable in general for any system including GaN–

AlyGa1−yN which is a possible candidate for a high-power
sub-millimeter wave source [32].
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[14] Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E and

de Dios-Leyva M 1998 J. Phys.: Condens. Matter
10 3557–67

[15] Tyc M H and Salejda W 2002 Physica A 303 493–506
[16] Kohmoto M, Kadanoff L P and Tang C 1983 Phys. Rev. Lett.

50 1870–2
[17] Ryu C S, Oh G Y and Lee M H 1993 Phys. Rev. B 48 132–41
[18] Nanda J, Mahapatra P K and Roy C L 2006 Physica B

383 232–42
[19] Schomburg E, Scheuerer R, Brandl S, Renk K F, Pavel’ev D G,

Koschurinov Y, Ustinov V, Zhukov A and Kop’ev P S 1999
Electron. Lett. 35 1491–2

[20] Gundlach K H 1966 Solid-State Electron. 9 949–57
[21] Tsu R and Esaki L 1973 Appl. Phys. Lett. 22 562–4
[22] Vatannia S and Gildenblat G 1996 IEEE J. Quantum Electron.

32 1093–105
[23] Mahapatra P K, Panchadhyayee P, Bhattacharya S P and

Khan A 2008 Physica B at press
[24] Gumbs G and Ali M K 1988 Phys. Rev. Lett. 60 1081–4
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